分数的基本性质小学数学教学反思
作为一位到岗不久的教师,我们要有一流的课堂教学能力,通过教学反思能很快的发现自己的讲课缺点,那要怎么写好教学反思呢?下面是小编为大家收集的分数的基本性质小学数学教学反思,希望对大家有所帮助。
学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:
1、学生在故事情境中大胆猜想。
通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。
3、让学生在分层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
“分数的基本性质”是人教版小学数学五年级下册的内容,它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,对这部分内容我是这样设计教学的:
1、通过商不变的规律、除法与分数的关系的复习,帮助学生意识到商不变规律与新知识的学习具有定的联系,为新知识的学习奠定基础。
2、用故事情景引入,增强解决问题的现实性。采用学生自己亲自观察、操作,再分析怎样做的方式,把学生推上学习的主体地位,放手让学生自己去解决问题。
3、运用知识,解决实际问题。先进行基本练习,深化对分数的基本性质认识,通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。
运用情景引入和猜测的方式吸引学生主动参与学习研究;通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,才能激发学生学习兴趣,让学生获得了成功体验。
一、抛旧引新,给予探究空间。
通过商不变规律的复习,帮助学生意识到商不变规律与新知识的学习具有一定的联系,为新知识的学习奠定基础;用猜测的方式,激发学生的'学习兴趣,进一步复习的知识与将要学习的新知识的内在联系。
二、步步逼近,主动探究。
用逐步向学习目标逼近的方式学习数学,先概括这两个例题的规律,再加以推广,在推广的过程中不断完善对新知识的认识,这种认知方式是符合儿童的认知规律的。在探索规律的过程中,学生不能一次完整地归纳出分数的基本性质,只能用逐步向目标逼近的方式,先引导学生概括出这两道例题的规律,再将这个规律与书上的结论进行比较,通过比较学生可以发现归纳的规律并不精确,然后重点讨论为什么要“0除外”,使学生全面、准确地掌握分数的基本性质。接下来再沟通商不变的规律与分数的基本性质的内在联系,加深学生对分数的基本性质的理解。
三、前后呼应,体验成功。
在探过程中充分发挥学生学习的主体作用,用实验、说解问题的过程、对比归纳规律等方式,让学生参与学习的全过程,在掌握所学知识的同时获得成功体验。复习准备部分通过复习商不变规律为学习分数基本性质打上基础;新课探究部分通过探究同一单位量分数大小的变化的规律得出分子、分母同时乘上同一个数(0除外)分数的大小不变的性质;应用拓展时又利用判断等形式来巩固知识。学生掌握知识的情况比较理想。
“分数的基本性质”是人教版小学数学五年级下册的内容,在本节课中我有几点体会:
一、我从知识的生长点和学生的知识结构入手,尊重学生已有的知识经验,力求把整数、小数、分数的基本性质融为一体。让学生把本节课的知识纳入已有的知识结构中去,以便更好地梳理、形成较完整的知识结构。
数的基本性质、整数的商不变规律的本质联系都是:表面数据变化了而数的大小却不变。根据分数与除法的关系把除法算式改为分数,分子、分母变化了,分数的大小怎么样?为什么分数的分子、分母变化了而分数的大小不变?激发了学生的探究的兴趣,而且学生从知识的联系中感悟出分数的基本性质,学生还能自己给这样的规律起名。
二、让学生从除法商不变的规律中猜想分数中是否也存在这样的规律?在验证猜想时学生兴趣较高,但学生的数学语言不规范。只要给学生充分的时间和空间让学生真正参与到学习中来,我们会发现学生的思考很精彩。
三、教学分数的基本性质时,学生顺着教师的指引的路很快就能得到本课的主要内容。但是课后感觉,应该更大程度的放手让学生自己去寻找变化规律更合理。教师适时的肯定学生的做法的正确性,不要很快说出其中变化的规律。引导学生思考怎样才能很快地看出其中的变化规律?引导学生的思维继续深入,学生积极思考后回答会更精彩。虽然只是一个小小的问题,教师是直接指导还是适当引导对学生的影响却是很大。教师只有通过不断思考,不断反思,在实践中锻炼自己,从细微处严格要求自己,才能提高自己的应变能力,真正做到与学生共同成长。
本节课教学,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情!这样的设计真是激发了学生的学习兴趣,学生带着愉快的心情展开学习。课堂的故事导入就是引导学生以数学的视角来分析问题、解决问题,从而让学生感受学习数学的价值。
本节课教学是让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验、感受,用自己的思维方式,自由、开放地去探索、去发现、去创造。
在学生通过听故事、看图片,感受到1/2=2/4=4/8相等后,让学生猜想1/2、2/4、4/8这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的,体现了学生思维的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。
课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。
上周我教了《分数的基本性质》一课,分数的基本性质一课是本册教材第四单元的一个内容。这部内容是学生在学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。而约分、通分又是分数四则计算重要基础,因此,理解分数大小不变规律我觉得非常的重要。
本节课我就谈谈自己的一些想法。
(一)情境的创设,游戏引入。
课的开始,我讲了一个兔妈妈分大饼的故事,(同学们,你们听故事吗,那老师给大家讲一个故事。兔山上的兔子最爱吃兔妈妈做的大饼了。有一天,兔妈妈做了3只大小一样的饼,他把第一只饼平均切成了4块,拿了一块给第一只兔子。第二只兔子看见了说:“妈妈,我要2块,我要2块。”于是,兔妈妈把第2只饼平均切成8块,拿了2块给第二只兔子。第三只兔子更贪,说:“妈妈,我要4块,我要4块。”于是,兔妈妈把第3只饼平均切成16块,拿了4块给第二只兔子。同学们,你们知道哪知兔子分得多吗?)通过分大饼这一故事目的是想创设了一种和谐愉悦的气氛,能激发学生的学习兴趣,更能激起学生探索新知的欲望。在课堂实施中,我发现学生还是爱听故事的,从这个故事中学生也能说出分到的饼的大小是一样的。并能非常流利地说出了每个兔子分到每个饼的1/4,2/8,4/16。接着我提出疑问,既然你们刚才说到三只兔子分到的饼一样多,那就意味着这三个分数的大小是相等的,那我们还没有学过分子和分母不一样的分数的大小比较,你怎么知道这3个分数大小相等呢?就引出了规律的探索的第一步。
(二)引导发现、探索规律。
在故事中学生得出这3个分数大小相同后,为了给学生创设个性化的学习空间,我对学生说你可以根据老师发给你的材料来验证这三个分数的大小,如果你觉得不需要这些材料,那也可以不用。这样的设计我的目的是能够给予学生一定的探究空间,同时也增添活动的趣味性和挑战性。在学生实际操作中我发现,有的学生用3个大小一样的圆、有的用3张大小一样的长方形纸,也有的学生用了分数和除法的关系,运用这个关系的时候还用到了我们以前学过的商不变性质,解决了这3个分数的大小是相等的。
(三)练习的设计
为了有效地防止学生在课堂教学后期产生注意力分散,较好的调动学生的学习积极性。在练习设计方面,尽量给枯燥的练习赋予丰富多彩的形式,一方面可以集中学生的注意力,另一方面也可以放松学生的心情,让他们在轻松愉快的氛围里学习知识,本课中设计了:
①填空。3/5=3×-/5×-=9/-
4/-=48/60
7/49=3/-=-/7=……
②判断。
①5/25=5÷5=25÷5=5×12=25×12
②12/20=12+2=20+2=14/24
③2/5=2×2/5=4/5
④5/8=5÷5/8×8=1/64
③游戏。老师写一个分数,你能写出和老师相等的分数?你能写几个?写的完吗?在写的时候,你是怎么想的?
④1/a=7/b(a和b是不为0的自然数),当a=1、2、3、4……的时候,b分别=?a和b为什么有怎样的关系?为什么有这样的关系呢?
由于时间紧迫,也没有好好的去利用。总之,一节课下来,问题多多,值得反思。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.gunzhua.com/fanwen/gongzuojihua/715265.html