四边形知识点总结
四边形知识点是几何知识的基础,那么四边形知识点重要的又有哪一些呢?下面四边形知识点总结是小编想跟大家分享的,欢迎大家浏览。
(一)平行四边形的定义、性质及判定.
1.两组对边平行的四边形是平行四边形.
2.性质:
(1)平行四边形的对边相等且平行;
(2)平行四边形的对角相等,邻角互补;
(3)平行四边形的对角线互相平分.
3.判定:
(1)两组对边分别平行的四边形是平行四边形:
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形:
(5)对角线互相平分的四边形是平行四边形.
4·对称性:平行四边形是中心对称图形.
(二)矩形的定义、性质及判定.
1-定义:有一个角是直角的平行四边形叫做矩形.
2·性质:矩形的四个角都是直角,矩形的对角线相等
3.判定:
(1)有一个角是直角的平行四边形叫做矩形;
(2)有三个角是直角的'四边形是矩形:
(3)两条对角线相等的平行四边形是矩形.
4·对称性:矩形是轴对称图形也是中心对称图形.
(三)菱形的定义、性质及判定.
1·定义:有一组邻边相等的平行四边形叫做菱形.
(1)菱形的四条边都相等;。
(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(3)菱形被两条对角线分成四个全等的直角三角形.
(4)菱形的面积等于两条对角线长的积的一半:
2.s菱=争6(n、6分别为对角线长).
3.判定:(1)有一组邻边相等的平行四边形叫做菱形
(2)四条边都相等的四边形是菱形;
(3)对角线互相垂直的平行四边形是菱形.
4.对称性:菱形是轴对称图形也是中心对称图形.
(四)正方形定义、性质及判定.
1.定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
2.性质:(1)正方形四个角都是直角,四条边都相等;
(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;
(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形;
(4)正方形的对角线与边的夹角是45。;
(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
3.判定:
(1)先判定一个四边形是矩形,再判定出有一组邻边相等;
(2)先判定一个四边形是菱形,再判定出有一个角是直角.
4.对称性:正方形是轴对称图形也是中心对称图形.
(五)梯形的定义、等腰梯形的性质及判定.
1.定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯
形.一腰垂直于底的梯形是直角梯形.
2.等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等.
3.等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形.
4.对称性:等腰梯形是轴对称图形.
(六)三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半.
(七)线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点..
(八)依次连接任意一个四边形各边中点所得的四边形叫中点四边形
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.gunzhua.com/fanwen/gongzuojihua/660555.html