首页 > 范文 > 工作计划

高中数学说课稿

高中数学说课稿



实用的高中数学说课稿范文锦集十篇

  作为一位杰出的教职工,常常要写一份优秀的说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。我们该怎么去写说课稿呢?下面是小编为大家整理的高中数学说课稿10篇,欢迎大家分享。

高中数学说课稿 篇1

  一.说教材

  1.本节课主要内容是线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,根据约束条件建立线性目标函数。应用线性规划的图解法解决一些实际问题。

  2.地位作用:线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它可以解决科学研究、工程设计、经济管理等许多方面的实际问题。简单的线性规划是在学习了直线方程的基础上,介绍直线方程的一个简单应用。通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

  3.教学目标

  (1)知识与技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,能根据约束条件建立线性目标函数。

  了解并初步应用线性规划的图解法解决一些实际问题。

  (2)过程与方法:提高学生数学地提出、分析和解决问题的能力,发展学生数学应用意识,力求对现实世界中蕴含的一些数学模式进行思考和作出判断。

  (3)情感、态度与价值观:体会数形结合、等价转化等数学思想,逐步认识数学的应用价值,提高学习数学的兴趣,树立学好数学的自信心。

  4.重点与难点

  重点:理解和用好图解法

  难点:如何用图解法寻找线性规划的最优解。

  二.说教学方法

  教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

  (1)启发引导学生思考、分析、实验、探索、归纳。这能充分调动学生的主动性和积极性。

  (2)采用“从特殊到一般”、“化抽象为具体”、“化静为动”的方法。这有利于学生对知识进行主动建构;有利于突出重点、解决难点;也有利于发挥学生的创造性。

  (3)体现“等价转化”、“数形结合”的思想方法。这样可发挥学生的主观能动性,有利于提高学生的各种能力。

  三.说学法指导

  教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:观察分析、联想转化、动手实验、练习巩固。

  (1)观察分析:通过引例让学生观察化旧知为新知,造成学生认知冲突。

  (2)联想转化:学生通过分析、探索、得出解决问题的方法。

  (3)动手实验:通过作图、实验、从而得出一般解题步骤。

  (4)练习巩固:让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容及其差距。

  四.说教学程序

  1、导入课题: 由一个不等式组表示平面区域转化为在此平面区域内一二元一次数的最值问题,造成学生认知冲突。

  3、导学达标之一:创设情境、形成概念

  通过引例的问题让学生探索解决新问题的方法。

  (设计意图:利用已经学过的知识逐步分析,学以致用,使学生经历数学知识的形成过程,从而提高学生数学的地提出、分析和解决问题的能力。)

  然后老师逐步引导,动手实验,化抽象为直观。从而得到解决此类问题的方法,并对比引例给出相关概念:线性约束条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解。并能根据引例提炼线性规划问题的解法——图解法。

  (设计意图:引导学生观察和分析问题,激发学生的探索欲望,从而培养学生的解决问题和总结归纳的能力。)

  4.导学达标之二:针对问题、举例讲解、形成技能

  例一:课本61页例3

  (创设意境:,练习是使学生明白数学来源于实际又运用于实际,同时使学生进初步应用线性规划的图解法解决一些实际问题。)

  6.巩固目标:

  练习一:学生做课堂练习P64例4

  (叫学生提出解决问题的方法,并用多媒体展示,并根据问题的实际意义,考虑取值范围。造成新的认知冲突,从而研究探索,得到整点最优解的一种求法。)

  练习二:为了赚大钱,老张最近承包了一家具厂,可老张却闷闷不乐,原来家具厂有方木料90m3,五合板600m2,老张准备加工成书桌和书厨出售,他通过调查了解到:生产每张书桌需要方木料0.1m3、五合板2m2,生产每个书橱需要方木料0.2m3、五合板1m2,出售一张书桌可获利润80元,出售一个书橱可获利润120元。老张却不知如何安排?(电脑显示问题)

  (设计意图:通过实际问题,激发学生兴趣,培养学生的数学应用意识,力求学生能够对现实生活中蕴含的一些数学模式进行思考和作出判断。)

  7.归纳与小结:

  小结本课的主要学习内容是什么?(由师生共同来完成本课小结)

  (创设意境:让学生参与小结,引导学生对所学知识进行反思,有利于加强学生记忆和形成良好的数学思维习惯)

  8.布置作业:

  P64. 2

  五.说板书设计

  板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,同时便于记忆,有利于提高教学效果。

高中数学说课稿 篇2

  一、教材分析

  1、从在教材中的地位与作用来看

  《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。

  2、从学生认知角度看

  从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

  3、学情分析

  教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。

  4、重点、难点

  教学重点:公式的推导、公式的特点和公式的运用。

  教学难点:公式的推导方法和公式的灵活运用。

  公式推导所使用的"错位相减法"是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

  二、目标分析

  知识与技能目标:

  理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。

  过程与方法目标:

  通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转

  化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。

  情感与态度价值观:

  通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。

  三、过程分析

  学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

  1、创设情境,提出问题

  在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

  设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点。

  此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时我对他们的这种思路给予肯定。

  设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的"无用功",急急忙忙地抛出"错位相减法",这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍。同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔、

  2、师生互动,探究问题

  在肯定他们的思路后,我接着问:1,2,22,.....,263是什么数列?有何特征?应归结为什么数学问题呢?

  探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)

  探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式。比较(1)(2)两式,你有什么发现?

  设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变"加"为"减",在教师看来这是"天经地义"的,但在学生看来却是"不可思议"的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机。

  经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:。老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

  设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。

  3、类比联想,解决问题

  这时我再顺势引导学生将结论一般化,

  这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。

  设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。

  对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)

  再次追问:结合等比数列的通项公式an=a1qn—1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

  设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。

  4、讨论交流,延伸拓展

  在此基础上,我提出:探究等比数列前n项和公式,还有其它方法吗?我们知道,

  那么我们能否利用这个关系而求出sn呢?根据等比数列的定义又有,能否联想到等比定理从而求出sn呢?

  设计意图:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围、以上两种方法都可以化归到,这其实就是关于的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用、

  5、变式训练,深化认识

  首先,学生独立思考,自主解题,再请学生上台来幻灯演示他们的解答,其它同学进行评价,然后师生共同进行总结。

  设计意图:采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成。通过以上形式,让全体学生都参与教学,以此培养学生的参与意识和竞争意识。

  6、例题讲解,形成技能

  设计意图:解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想。

  7、总结归纳,加深理解

  以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。

  设计意图:以此培养学生的口头表达能力,归纳概括能力。

  8、故事结束,首尾呼应

  最后我们回到故事中的问题,我们可以计算出国王奖赏的小麦约为1、84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺。

  设计意图:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。

  9、课后作业,分层练习

  必做:P129练习1、2、3、4

  选作:

  (2)"远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?"这首中国古诗的答案是多少?

  设计意图:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。

  四、教法分析

  对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系。在教学中,我采用"问题――探究"的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段。

  利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率。

  五、评价分析

  本节课通过三种推导方法的研究,使学生从不同的思维角度掌握了等比数列前n项和公式。错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;等比定理:回归定义,自然朴实。学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性。同时通过精讲一题,发散一串的变式教学,使学生既巩固了知识,又形成了技能。在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质。

高中数学说课稿 篇3

  1. 教材分析

  1-1教学内容及包含的知识点

  (1) 本课内容是高中数学第二册第七章第三节《两条直线的位置关系》的最后一个内容。

  (2) 包含知识点:点到直线的距离公式和两平行线的距离公式。

  1-2教材所处地位、作用和前后联系

  本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定性刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。

  可见,本课有承前启后的作用。

  1-3教学大纲要求

  掌握点到直线的距离公式

  1-4高考大纲要求及在高考中的显示形式

  掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。

  1-5教学目标及确定依据

  教学目标

  (1) 掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。

  (2) 培养学生探究性思维方法和由特殊到一般的研究能力。

  (3) 认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。

  (4) 渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。

  确定依据:

  中华人民共和国教育部制定的《全日制普通高级中学数学教学大纲》(20xx年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(20xx年)

  1-6教学重点、难点、关键

  (1) 重点:点到直线的距离公式

  确定依据:由本节在教材中的地位确定

  (2) 难点:点到直线的距离公式的推导

  确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。

  分析“尝试性题组”解题思路可突破难点

  (3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。

  2.教法

  2-1发现法:本节课为了培养学生探究性思维目标,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试性题组”,引导、启发学生分析、发现、比较、论证等,从而形成完整的数学模型。

  确定依据:

  (1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,阶段渐进性原则。

  (2)事物之间相互联系,相互转化的辩证法思想。

  2-2教具:多媒体和黑板等传统教具

  3. 学法

  3-1发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。

  一句话:还课堂以生命力,还学生以活力。

  3-2学情:

  (1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定性认识和对两线相交的定量认识,为本节推证公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。

  (2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。

  (3)生活经验:数学源于生活,生活中的点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。

  3-3学具:直尺、三角板

  4. 教学评价

  学生完成反思性学习报告,书写要求:

  (1) 整理知识结构。

  (2) 总结所学到的基本知识,技能和数学思想方法。

  (3) 总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因。

  (4) 谈谈你对老师教法的建议和要求。

  作用:

  (1) 通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。

  (2) 报告的写作本身就是一种创造性活动。

  (3) 及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿性教学。

  5. 板书设计

  (略)

  6. 教学的反思总结

  心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。

高中数学说课稿 篇4

  一、教材分析

  (一)教材的地位和作用

  “一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

  (二)教学内容

  本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

  二、教学目标分析

  根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:

  知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

  能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

  情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

  三、重难点分析

  一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

  要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

  四、教法与学法分析

  (一)学法指导

  教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

  (二)教法分析

  本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

  建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

  本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。

  五、课堂设计

  本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

  (一)创设情景,引出“三个一次”的关系

  本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“>”则变成一元二次不等式x2-x-6>0让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。

  为此,我设计了以下几个问题:

  1、请同学们解以下方程和不等式:

  ①2x-7=0;②2x-7>0;③2x-7<0

  学生回答,我板书

高中数学说课稿 篇5

  一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

  二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

  三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.

  四、教学目标

  1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

  2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3.借助多媒体辅助教学,激发学习数学的兴趣.

  五、教学重点与难点:

  教学重点

  1.对圆锥曲线定义的理解

  2.利用圆锥曲线的定义求“最值”

  3.“定义法”求轨迹方程

  教学难点:

  巧用圆锥曲线定义解题

  六、教学过程设计

  【设计思路】

  (一)开门见山,提出问题

  一上课,我就直截了当地给出——

  例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。

  (A)椭圆 (B)双曲线 (C)线段 (D)不存在

  (2)已知动点 M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。

  (A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线

  【设计意图】

  定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

  为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

  【学情预设】

  估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2

  5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5

  入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

  在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。

  (二)理解定义、解决问题

  例2 (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910 相内切,求△ABC面积的最大值。

  (2)在(1)的条件下,给定点P(-2,2), 求|PA|

  七、教学反思

  1.本课将借助于“XXX”,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

  2.利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法. 循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

  总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题.而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

高中数学说课稿 篇6

  教学目标

  A、知识目标:

  掌握等差数列前n项和公式的推导方法;掌握公式的运用。

  B、能力目标:

  (1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

  (2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

  (3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

  C、情感目标:(数学文化价值)

  (1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

  (2)通过公式的运用,树立学生"大众教学"的思想意识。

  (3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

  教学重点:

  等差数列前n项和的公式。

  教学难点:

  等差数列前n项和的公式的灵活运用。

  教学方法

  启发、讨论、引导式。

  教具:

  现代教育多媒体技术。

  教学过程

  一、创设情景,导入新课。

  师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。

  例1,计算:1+2+3+4+5+6+7+8+9+10。

  这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

  生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。

  生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。

  上面两式相加得2S=11+10+。。。。。。+11=10×11=110

  10个

  所以我们得到S=55,

  即1+2+3+4+5+6+7+8+9+10=55

  师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。

  理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50个101,所以1+2+3+。。。。。。+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?

  生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq。

  二、教授新课(尝试推导)

  师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。

  生4:Sn=a1+a2+。。。。。。an—1+an也可写成

  Sn=an+an—1+。。。。。。a2+a1

  两式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)

  n个

  =n(a1+an)

  所以Sn=(I)

  师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n—1)d代入公式(1)得

  Sn=na1+ d(II)

  上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n—1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。

  三、公式的应用(通过实例演练,形成技能)。

  1、直接代公式(让学生迅速熟悉公式,即用基本量例2、计算:

  (1)1+2+3+。。。。。。+n

  (2)1+3+5+。。。。。。+(2n—1)

  (3)2+4+6+。。。。。。+2n

  (4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n

  请同学们先完成(1)—(3),并请一位同学回答。

  生5:直接利用等差数列求和公式(I),得

  (1)1+2+3+。。。。。。+n=

  (2)1+3+5+。。。。。。+(2n—1)=

  (3)2+4+6+。。。。。。+2n==n(n+1)

  师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。

  生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以

  原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)

  =n2—n(n+1)=—n

  生7:上题虽然不是等差数列,但有一个规律,两项结合都为—1,故可得另一解法:

  原式=—1—1—。。。。。。—1=—n

  n个

  师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。

  例3、(1)数列{an}是公差d=—2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

  生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

  又∵d=—2,∴a1=6

  ∴S12=12 a1+66×(—2)=—60

  生9:(2)由a1+a2+a3=12,a1+d=4

  a8+a9+a10=75,a1+8d=25

  解得a1=1,d=3 ∴S10=10a1+=145

  师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。

  师:(继续引导学生,将第(2)小题改编)

  ①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

  ②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。

  2、用整体观点认识Sn公式。

  例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)

  师:来看第(1)小题,写出的计算公式S16==8(a1+a6)与已知相比较,你发现了什么?

  生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

  师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。

  师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。

  最后请大家课外思考Sn公式(1)的逆命题:

  已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=。数列{an}是否为等差数列,并说明理由。

  四、小结与作业。

  师:接下来请同学们一起来小结本节课所讲的内容。

  生11:1、用倒序相加法推导等差数列前n项和公式。

  2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。

  生12:1、运用Sn公式要注意此等差数列的项数n的值。

  2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。

  3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。

  师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。

  本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。

  数学思想:类比思想、整体思想、方程思想、函数思想等。

  作业:P49:13、14、15、17

高中数学说课稿 篇7

  一、教材分析:

  《向量的'加法》是《必修》4第二章第二单元中“平面向量的线性运算”的第一节课。本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在“平面向量”及“空间向量”中有很重要的地位。

  二、学情分析:

  学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。

  三、教学目的:

  1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。

  2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。

  3、通过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的能力。

  四、教学重、难点

  重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容,平行四边形法则在本课中所占份量略少于三角形法则。

  难点:对三角形法则的理解;方向相反的两个向量的加法。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。

  五、教学方法

  本节采用以下教学方法:1、类比:由数的加法运算类比向量的加法运算。2、探究:由力的合成引入平行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;通过图形,观察得出向量加法满足交换律、结合律等,这些都体现探究式教学法的运用。3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。4、多媒体技术的运用,能直观地表现向量的平移,相等向量的意义,更能说清两个法则的几何意义及运算律。

  六、数学思想的体现:

  1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。

  2、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从对比中看出两者的不同,效果较好。

  3、归纳思想:主要体现在以下三个环节①学完平行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都可以选用。②由共线向量的加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。③对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。

  七、教学过程:

  1、回顾旧知:本节要进行向量的平移,且对向量加法分共线与不共线两种情况,所以要复习向量、相等向量、共线向量等概念,这些都是新课学习中必要的知识铺垫。

  2、引入新课:

  (1)平行四边形法则的引入。

  学生在物理学中虽然接触过位移的合成,但是并没有形成三角形法则的概念;而对平行四边形法则学生已学过,很熟悉。所以我决定由力的合成引入向量加法的平行四边形法则。平行四边形法则的特点是起点相同,但是物理中力的合成是在有相同的作用点的条件下合成的,引入到数学中向量加法的平行四边形法则,所给出的图形也是现成的平行四边形,而学生刚学完相等向量,对相等向量的概念还没有深刻的认识,易产生误解:表示两个已知向量的有向线段的起点必须在一起才能用平行四边形法则,不在一起不能用。这时要通过讲解例1,使学生认识到可以通过平移向量,使表示两个向量的有向线段有共同的起点。这一点对理解及运用法则求两向量的和很重要。

  设计意图:本着从学生最熟悉、离学生最近的知识经验为接入点,用学生熟知的方法来解决新的问题——向量的加法,这样新中有旧,学生容易接受,也使学科间的渗透发挥了作用,加深了学生对向量加法的平行四边形法则的“起点相同”这一特点的认识,例1的讲解使学生认识到当表示向量的有向线段的起点不在一起时,须把起点移到一起,至此才能使学生完成对平行四边形法则理解真正到位。

  (2)三角形法则的引入。三角形法则没有按照教材中利用位移的合成引入,而是从前面所讲的平行四边形法则的图形中直接引入(如图)。

  所以这种把两个向量相加的方法称为三角形法则。接下来用幻灯片完整展示三角形法则,同时法则的作法叙述、作图过程对学生也起到了示例的作用。于是前面的例1还可以利用三角形法则来做。

  这时,总结出两个不共线向量求和时,平行四边形法则与三角形法则都可以用。

  设计意图:由平行四边形法则的图形引入三角形法则,可以很清楚地使学生从向何意义上认识到两个法则之间的密切联系,理解它们的实质,而且衔接自然,能够使学生对比地得出两个法则的特点与实质,并对两个法则的特点有较深刻的印象。

  (3)共线向量的加法

  方向相同的两个向量相加,对学生来说较易完成,“将它们接在一起,取它们的方向及长度之和,作为和向量的方向与长度。”引导学生分析作法,结果发现还是运用了三角形法则:首尾相接,方向由第一个向量的起点指向第二个向量的终点。

  方向相反的两个向量相加,对学生来说是个难点,首先从作图上不知道怎样做。但是学生学过有理数加法中的异号两数相加:“异号两数相加,用较大

  的绝对值减去较小的绝对值,符号取绝对值较大的数的符号。”类比异号两数相加,他们会用较长的模减去较短的模,方向取模较长的向量的方向。具体做法由老师引导学生尝试运用三角形法则去做,发现结论正确。

  反思过程,学生自然会想到方向相同的两个向量相加,类似于同号两数相加。这说明两个共线向量相加依然可用三角形法则 通过以上几个环节的讨论,可以作个简单的小结:两个不共线向量相加,可采用平行四边形法则或三角形法则,而两个共线向量相加在本课所学方法中只能用三角形法则,说明三角形法则适用于任意两个向量相加。

  设计意图:通过对共线向量加法的探讨,拓宽了学生对三角形法则的认识,使得不同位置的向量相加都有了依据,并且采用类比的方法,使学生对共线向量的加法,尤其是方向相反的两个向量的加法更易于理解,可以化解难点。

  (4)向量加法的运算律

  ①交换律:交换律是利用平行四边形法则的图形,又结合三角

  形法则得出,理解起来没什么困难,再一次强化了学生对两个法则特点及实质的认识。

  ②结合律:结合律是通过三个向量首尾相接,先加前两个再与第三个向量相加,和先加后两个向量再与第一个向量相加所得结果相同。

  接下来是对应的两个练习,运用交换律与结合律计算向量的和。

  设计意图:运算律的引入给加法运算带来方便,从后面的练习中学生能够体会到这点。由结合律还使学生发现,多个向量相加,同样可以运用三角形法则:将所加向量首尾相接,和向量的方向是由第一个向量的起点指向最后一个向量的终点。这样使学生明白,三角形法则适用于任意多个向量相加。

  3、小结

  先由学生小结,检查学生对本课重要知识的认识,也给学生一个概括本节知识的机会,然后用课件展示小结内容,使学生印象更深。

  (1)平行四边形法则:起点相同,适用于不共线向量的求和。

  (2)三角形法则首尾相接,适用于任意多个向量的求和。

  (3)运算律

高中数学说课稿 篇8

  高中数学第三册(选修)Ⅱ第一章第2节第一课时

  一、教材分析

  教材的地位和作用

  期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

  教学重点与难点

  重点:离散型随机变量期望的概念及其实际含义。

  难点:离散型随机变量期望的实际应用。

  [理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

  二、教学目标

  [知识与技能目标]

  通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

  会计算简单的离散型随机变量的期望,并解决一些实际问题。

  [过程与方法目标]

  经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。

  通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

  [情感与态度目标]

  通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

  三、教法选择

  引导发现法

  四、学法指导

  “授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

  五、教学的基本流程设计

  高中数学第三册《离散型随机变量的期望》说课教案.rar

高中数学说课稿 篇9

  各位老师大家好!

  我说课的内容是人教 版 A版必修2第三章第一节直线的倾斜角与斜率第一课时。

  (一) 教材分析

  本节课选自必修2第三章(解析几何的第一章)第一节直线的倾斜角与斜率第一课时,直线的倾斜角和斜率解析几何的重要概念;是刻画直线倾斜程度的几何要素与代数表示;学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以解析法的方式来研究直线相关性质,而本节课直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节课也初步向学生渗透解析几何的基本思想和基本方法。因此,本课有着开启全章、渗透方法,承前启后的作用。

  (二) 学情分析

  本节课的 教学 对象是高二学生,这个年龄段的学生天性活泼,求知欲强,并且学习主动,在知识储备上 知道两点确定一条直线, 知道点与坐标的关系,实现了最简单的形与数的转化;了解刻画倾斜程度可用角和正切值;具备了一定的数形结合的能力和分类讨论的思想。但根据学生的认知规律,还没有形成自觉地把数学问题抽象化的能力。所以在教学设计时需 从 学生的最近发展区进行探究学习,尽量让不同层次的学生都经历概念的形成、 巩固 和应用过程。

  (三)教学目标

  1. 理解直线的倾斜角和斜率的概念, 理解直线的倾斜角的唯一性和斜率的存在性;

  2. 掌握过两点的直线斜率的计算公式 ;

  3. 通过经 历从具体实例抽象出数学概念的过程,培养学生观察、分析和概括能力;

  4 . 通过斜率概念的建立以及斜率公式的构建,帮助学生进一步体会数形结合的思想,培养学

  生严谨求简的数学精神。

  重点:斜率的概念,用代数方法刻画直线斜率的过程,过两点的直线斜率的计算公式。

  难点: 直线的倾斜角与斜率的概念的形成 ,斜率公式的构建。

  (四)教法和学法

  课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情景,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效的渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。 根据这样的教学原则,考虑到学生首次接触解析几何的内容及研究方法,所以我采用 设置问题串 的形式 , 启发引导 学生 类比、联想,产生知识迁移 ;通过 几何画板演示实验、探索交流 相结合的教学方法激发学生 观察、实验,体验知识的形成过程 ;由此循序渐进 , 使学生很自然达到本节课的学习目标。

  ( 五) 教学过程

  环节 1.指明研究方向 (3min)

  平面上的点可以用坐标表示,也就是几何问题代数化。那么我们生活中见到的很多优美的曲线能否用数来刻画呢?

  简介17 世纪法国数学家笛卡尔和费马的数学史 。

  【设计意图】 使学生对解析几何的历史以及它的研究方向有一个大致的了解

  由此引入课题(直线的倾斜角与斜率)

  环节2.活动探究(13min)

  【设计意图】 让学生经历探究过程后掌握倾斜角和斜率两个概念,体会概念的产生是自然的,并不是硬性规定的。

  (探究活动一:倾斜角概念的得出)

  问题1. 如图,对于平面直角坐标系内过两点有且只有一条直线,过一点P的位置能确定吗?如图,这些不同直线的区别在哪里?

  【设计意图】引导学生发现过定点的不同直线,其倾斜程度不同。从而发现过直线上一点和直线的倾斜程度也能确定一条直线。

  问题2. 在直角坐标系中,任何一条直线与x轴都有一个相对倾斜程度,可以用一个什么样的几何量来反映一条直线与x轴的相对倾斜程度呢?

  【设计意图】引导学生探索描述直线的倾斜程度的几何要素, 由此引出倾斜角的概念:直线L与x轴相交,我们取x轴为基准,x轴正向与直线L向上的方向之间所成的角α叫做直线L的倾斜角。

  问题3. 依据倾斜角的定义,小组合作探究倾斜角的范围是多少?

  (探究活动二:斜率概念的得出)

  问题4. 日常生活中,还有没有表示倾斜程度的量?

  问题5 . 如果使用“倾斜角”的概念,坡度实际就是 倾斜角的正切值,由此你认为还可以用怎样的量来刻画直线的倾斜程度?

  由学生已知坡度中“前进量”不能为0 ,补充 倾斜角 是90゜的直线 没有斜率

  【设计意图】 迁移、类比得出 我们把 一条直线的 倾斜角 的正切值叫做 这条 直线的 斜率 , 让学生感受数学概念来源于生活,并体验从直观到抽象的过程培养学生观察、归纳、联想的能力。

  环节 3.过程体验(斜率公式的发现)(10min)

  问题6. 两点能确定一条直线,那么两点能确定一条直线的斜率么?

  先由每名学生各自举出两个特殊的点。例如A(1,2)、B(3,4),独立研究如何由这两点求斜率,再通过学生相互讨论,师生共同交流提炼出解决问题的一般方法,进而把这种方法迁移到一般化的问题上来。得出斜率公式k=y2y1。

  为了深化对公式的理解,完善对公式的认识,我设计了如下三个思考问题:

  思考1:如果直线AB//x轴,上述结论还适用吗?

  思考2:如果直线AB//y轴,上述结论还适用吗?

  思考3:交换A、B位置,对比值有影响吗?

  在学生充分思考、讨论的基础上,借助信息技术工具,一方面计算 的 值,另一方面计算倾斜角的正切值。让学生亲自操作几何画板,改变直线的倾斜程度,动态演示可以把教科书第84页图3.1-4所示的各种情况都展示出来,形象直观,可使学生更好的把握斜率公式。

  环节4. 操作建构(10min)

  第一部分( 教材例一 ) : 如图,已知A(3,2),B(-4,1),C(0,-1), 求 直线AB,BC,CA的斜率,并判断倾斜角是锐角还是钝角。

  学生独立完成后,请三位学生作答,师生共同评析,明确斜率公式的运用,强调可以从形的角度直接判断直线的倾斜角是锐角还是钝角,也可由直线的斜率的正负判断。

  第二部分 ( 教材例二 ) : 在平面直角坐标系中,画出经过原 点且斜率分别为1,-1,2及-3的直线

  本题要求学生画图,目的是加强数形结合,我将请两位同学上台板演,其余同学在练习本上完成,因为直线经过原点,所以只要在找出另外一点就可确定,再推导斜率公式时,学生已经知道,斜率k的值与直线上P1,P2的位置无关,因此,由已知直线的斜率画直线时,可以再找出一个特殊点即可。

  环节 5.小结作业(4min)

  1、本节课你学到了哪些新的概念?他们之间有什么样 的关系?

  2、怎样求出已知两点的直线的斜率?

  3 、本节课你还有哪些问题?

  两点 直线 倾斜角 斜率

  一点一方向

  作业: 必做题: P.86 第1,2,题

  选做题: P.90 探究与发现:魔法师的地毯

  以上五个环节环环相扣,层层深入,以明线和暗线双线渗透。并注意调动学生自主探究与合作交流。注意教师适时的点拨引导,学生主体地位和教师的主导作用 得以 体现。能够较好的实现教学目标,也使课标理念能够很好的得到落实。

  (六) 板书设计

  3.1.1 直线的倾斜角与斜率

  1定义: 倾斜角 学生板演

  斜率

  2.斜率k与倾斜角之间的关系

  3.斜率公式

高中数学说课稿 篇10

  一、教学目标

  1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义.

  2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程.领悟直角坐标系的工具功能,丰富数形结合的经验.

  3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观.

  4.培养学生求真务实、实事求是的科学态度.

  二、重点、难点、关键

  重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法.

  难点:把三角函数理解为以实数为自变量的函数.

  关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化).

  三、教学理念和方法

  教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.

  根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用"启发探索、讲练结合"的方法组织教学.

  四、教学过程

  [执教线索:

  回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)--问题情境:能推广到任意角吗?--它山之石:建立直角坐标系(为何?)--优化认知:用直角坐标系研究锐角三角函数--探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)--自主定义:任意角三角函数定义--登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)--例题与练习--回顾小结--布置作业]

  (一)复习引入、回想再认

  开门见山,面对全体学生提问:

  在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?

  探索任意角的三角函数(板书课题),请同学们回想,再明确一下:

  (情景1)什么叫函数?或者说函数是怎样定义的?

  让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:

  传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域.

  现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A,其中x叫自变量,自变量x的取值范围A叫做函数的定义域.

  设计意图:

  函数和三角函数是一般和特殊的关系,是共性和个性的关系,学生已经学习了函数的概念,因此对三角函数的学习就是一个从一般到特殊的演绎的过程,也是以具体函数丰富函数概念的过程.教学经验表明:学生对函数两种定义的记忆是有一定困难的,容易遗忘,此处让学生对函数概念进行回想再认,目的在于明确函数概念的本质,为演绎学习任意角三角函数概念作好知识和认知准备.

  (情景2)我们在初中通过锐角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数.请回想:这三个三角函数分别是怎样规定的?

  学生口述后再投影展示,教师再根据投影进行强调:

  设计意图:

  学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展).温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少.

  (二)引伸铺垫、创设情景

  (情景3)我们已经把锐角推广到了任意角,锐角的三角函数概念也能推广到任意角吗?试试看,可以独立思考和探索,也可以互相讨论!

  留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导.

  能推广吗?怎样推广?针对刚才的问题点名让学生回答.用角的对边、临边、斜边比值的说法显然是受到阻碍了,由于4.1节已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数.

  设计意图:

  从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的"再创造"征程.

  教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!

  师生共做(学生口述,教师板书图形和比值):

  把锐角α安装(如何安装?角的顶点与原点重合,角的始边与x轴非负半轴重合)在直角坐标系中,在角α终边上任取一点P,作Pm⊥x轴于m,构造一个RtΔomP,则∠moP=α(锐角),设P(x,y)(x>0、y>0),α的临边om=x、对边mP=y,斜边长|oP∣=r.

  根据锐角三角函数定义用x、y、r列出锐角α的正弦、余弦、正切三个比值,并补充对应列出三个倒数比值:

  设计意图:

  此处做法简单,思想重要.为了顺利实现推广,可以构建中间桥梁或公共载体,使之既与初中的定义一致,又能自然地迁移到任意角的情形.由于前一节已经以直角坐标系为工具来研究任意角了,学生自然能想到仍然以直角坐标系为工具来研究任意角的三角函数.初中以直角三角形边角关系来定义锐角三角函数,现在要用坐标系来研究,探索的结论既要满足任意角的情形,又要包容初中锐角三角函数定义.这是一个认识的飞跃,是理解任意角三角函数概念的关键之一,也是数学发现的重要思想和方法,属于策略性知识,能够形成迁移能力,为学生在以后学习中对某些知识进行推广拓展奠定了基础(譬如从平面向量到空间向量的扩展,从实数到复数的扩展等).

  (情景4)各个比值与角之间有怎样的关系?比值是角的函数吗?

  追问:锐角α大小发生变化时,比值会改变吗?

  先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:保持r不变,让P绕原点o旋转即α在锐角范围内变化,六个比值随之变化的直观形象。结论是:比值随α的变化而变化.

  引导学生观察图3,联系相似三角形知识,

  探索发现:

  对于锐角α的每一个确定值,六个比值都是

  确定的,不会随P在终边上的移动而变化.

  得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化.所以,六个比值分别是以角α为自变量、以比值为函数值的函数.

  设计意图:

  初中学生对函数理解较肤浅,这里在学生思维的最近发展区进一步研究初中学过的锐角三角函数,在思维上更上了一个层次,扣准函数概念的内涵,突出变量之间的依赖关系或对应关系,是从函数知识演绎到三角函数知识的主要依据,是准确理解三角函数概念的关键,也是在认知上把三角函数知识纳入函数知识结构的关键.这样做能够使学生有效地增强函数观念.

  (三)分析归纳、自主定义

  (情境5)能将锐角的比值情形推广到任意角α吗?

  水到渠成,师生共同进行探索和推广:

  对于一个任意角α,它的终边所在位置包括下列两类共八种情形(投影展示并作分析):

  终边分别在四个象限的情形:终边分别在四个半轴上的情形:

  ;

  (指出:不画出角的方向,表明角具有任意性)

  怎样刻画任意角的三角函数呢?研究它的六个比值:

  (板书)设α是一个任意角,在α终边上除原点外任意取一点P(x,y),P与原点o之间的距离记作r(r=>0),列出六个比值:

  α=kππ/2时,x=0,比值y/x、r/x无意义;

  α=kπ时,y=0,比值x/y、r/y无意义.

  追问:α大小发生变化时,比值会改变吗?

  先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:使r保持不变,P绕原点o逆时针、顺时针旋转即角α变化,六个比值随之改变的直观形象。结论是:各比值随α的变化而变化.

  再引导学生利用相似三角形知识,探索发现:对于任意角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化.

  综上得到(强调):当角α变化时,六个比值随之变化;对于确定的角α,六个比值(如果存在的话)都不会随P在角α终边上的改变而改变,六个比值是确定的(对应的多值性即诱导公式一留到下节课分析).

  因此,六个比值分别是以角α为自变量、以比值为函数值的函数.

  根据历史上的规定,对比值进行命名,指出英文记法和读法,记作(承前作复合板书):

  =sinα(正弦)=cosα(余弦)=tanα(正切)

  =cscα(余割)=sec(正弦)=cotα(余切)

  教师强调:sinα表示sin与α的乘积吗?不是,sinα是函数记号,是一个整体,相当于函数记号f(x).其它几个三角函数也如此

  投影显示图六,指导学生分析其对应关系,进一步体会其函数内涵:

  (图六)

  指导学生识记六个比值及函数名称.

  教师指出:正弦、余弦、正切、余切、正割、余割六个函数统称为三角函数,三角函数有非常丰富的知识和思想方法,我们以后主要学习正弦、余弦、正切三个函数的相关知识和方法,对于余切、正割、余割,只要同学们了解它们的定义就够了(遵循大纲要求).

  引导学生进一步分析理解:

  已知角的集合与实数集之间可以建立一一对应关系,对于每一个确定的实数,把它看成一个弧度数,就对应着唯一的一个角,从而分别对应着六个唯一的三角函数值.因此,(板书)三角函数可以看成是以实数为自变量的函数,这将为以后的应用带来很多方便.

  设计意图:

  把角的终边分别在四个象限、四条半轴上的情形全作出来,有利于对任意性的全面把握.明确比值存在与否的条件,为确定函数定义域作准备.动画演示比值与角之间的依赖性与确定性关系,深化理解三角函数内涵.引导学生在理解的基础上自主地对三角函数作出明确定义,是本节课的中心任务.由于学生刚学弧度制,对弧度制的理解有待于在以后的学习应用中逐步感悟,因此部分学生对"三角函数可以看成是以实数为自变量的函数"的理解有半信半疑之感,有待通过后续的应用加深理解.

  (四)探索定义域

  (情景6)(1)函数概念的三要素是什么?

  函数三要素:对应法则、定义域、值域.

  正弦函数sinα的对应法则是什么?

  正弦函数sinα的对应法则,实质上就是sinα的定义:对α的每一个确定的值,有唯一确定的比值y/r与之对应,即α→y/r=sinα.

  (2)布置任务情景:什么是三角函数的定义域?请求出六个三角函数的定义域,填写下表:

  三角函数

  sinα

  cosα

  tanα

  cotα

  cscα

  secα

  定义域

  引导学生自主探索:

  如果没有特别说明,那么使解析式有意义的自变量的取值范围叫做函数的定义域,三角函数的定义域自然是指:使比值有意义的角α的取值范围.

  关于sinα=y/r、cosα=x/r,对于任意角α(弧度数),r>0,y/r、x/r恒有意义,定义域都是实数集R.

  对于tanα=y/x,α=kππ/2时x=0,y/x无意义,tanα的定义域是:{α|α∈R,且α≠kππ/2}..........

  教师指出:sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆.

  (关于值域,到后面再学习).

  设计意图:

  定义域是函数三要素之一,研究函数必须明确定义域.指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握.

  (五)符号判断、形象识记

  (情景7)能判断三角函数值的正、负吗?试试看!

  引导学生紧紧抓住三角函数定义来分析,r>0,三角函数值的符号决定于x、y值的正负,根据终边所在位置总结出形象的识记口诀:

  (同好得正、异号得负)

  sinα=y/r:上正下负横为0cosα=x/r:左负右正纵为0tanα=y/x:交叉正负

  设计意图:

  判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求.要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的识记口诀,这也是理解和记忆的关键.

  (六)练习巩固、理解记忆

  1、自学例1:已知角α的终边经过点P(2,-3),求α的六个三角函数值.

  要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照解答,模仿书面表达格式,巩固定义.

  课堂练习:

  p19题1:已知角α的终边经过点P(-3,-1),求α的六个三角函数值.

  要求心算,并提问中下学生检验,--------

  点评:角α终边上有无穷多个点,根据三角函数的定义,只要知道α终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义).

  补充例题:已知角α的终边经过点P(x,-3),cosα=4/5,求α的其它五个三角函数值.

  师生探索:已知y=-3,要求其它五个三角函数值,须知r=?,x=?.根据定义得=(方程思想),x>0,解得x=4,从而--------.解答略.

  2、自学例2:求下列各角的六个三角函数值:(1)0;(2)π/2;(3)3π/2.

  提问,据反馈信息作点评、修正.

  师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活,只要能够算出三角函数值,都可以。

  取特殊点能使计算更简明。课堂练习:p19题2.(改编)填表:

  角α(角度)

  0°

  90°

  180°

  270°

  360°

  角α(弧度)

  sinα

  cosα

  tanα

  处理:要求取点用定义求解,针对计算过程提问、点评,理解巩固定义.

  强调:终边在坐标轴上的角叫轴线角,如0、π/2、π、3π/2等,今后经常用到轴线角的三角函数值,要结合三角函数定义记熟这些值.

  设计意图:

  及时安排自学例题、自做教材练习题,一般性与特殊性相结合,进行适量的变式练习,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动进行思维训练,把"培养学生分析解决问题的能力"贯穿在每一节课的课堂教学始终.

  (七)回顾小结、建构网络

  要求全体学生根据教师所提问题进行总结识记,提问检查并强调:

  1.你是怎样把锐角三角函数定义推广到任意角的?或者说任意角三角函数具体是怎样定义的?(建立直角坐标系,使角的顶点与坐标原点重合,---,在终边上任意取定一点P,---)

  2.你如何判断和记忆正弦、余弦、正切函数的定义域?(根据定义,------)

  3.你如何记忆正弦、余弦、正切函数值的符号?(根据定义,想象坐标位置,-----)

  设计意图:

  遗忘的规律是先快后慢,回顾再现是记忆的重要途径,在课堂内及时总结识记主要内容是上策.此处以问题形式让学生自己归纳识记本节课的主体内容,抓住要害,人人参与,及时建构知识网络,优化知识结构,培养认知能力.

  (八)布置课外作业

  1.书面作业:习题4.3第3、4、5题.

  2.认真阅读p22"阅读材料:三角函数与欧拉",了解欧拉的生平和贡献,特别学习他对科学的挚着精神和坚忍不拔的顽强毅力!有兴趣的同学可以上网查阅欧拉的相关情况.

  教学设计说明

  一、对本节教材的理解

  三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用.

  星星之火,可以燎原.

  直角三角形简单朴素的边角关系,以直角坐标系为工具进行自然地推广而得到简明的任意角的三角函数定义,紧紧扣住三角函数定义这个宝贵的源泉,自然地导出三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、辅助角公式、图象和性质,本章教材就是这些内容的具体安排.定义直接用于解析几何(如直线斜率公式、极坐标、部分曲线的参数方程等),定义还是直接解决某些问题的工具,三角函数知识是物理学、高等数学、测量学、天文学的重要基础.

  三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身.

  二、教学法加工

  数学教材通常用抽象概括的形式化的数学书面语言阐述其知识和方法,教师只有通过教学法加工,始终贯彻"以学生的发展为本"的科学教育观,"将数学的学术形态转化为教育形态"(张奠宙语),引导学生积极主动地进行思考活动,直接参与体验数学知识产生发展的背景、过程,返璞归真,揭示本质,体会其中的思想和方法,学生只有这样才能真正理解掌握数学知识和方法,有效地发展智力、培养能力.

  在本节教材中,三角函数定义是重点,三角函数线是难点,为了较好地突出重点和突破难点,分散重点和难点,同时兼顾例题、课堂练习的协调匹配,将不按教材顺序来进行教学,第一课时安排三角函数的定义(突出重点)、定义域、符号判断、例题1、2及p19课堂练习1、2、3,第二课时安排三角函数线、p15练习(突破难点)、诱导公式一及课本例题3、4和其它练习.本课例属第一课时.

  教学经验表明,三角函数定义"简单易记",学生很容易轻视它,不少学生机械记忆、一知半解.本课例坚持"教师主导、学生主体"的原则,采用"启发探索、讲练结合"的常规教学方法,在学生的最近发展区围绕学生的学习目标设计了一系列符合学生认知规律的程序,通过多媒体辅助教学动画演示比值与角之间的依赖关系,拓展思维活动时空,力求使学生全员主动参与,积极思考,体会定义产生、发展的过程,通过思维过程来理解知识、培养能力.

  将六个比值放在一起来研究,同时给出六个三角函数的定义,能够增强对比感和整体感,至于大纲对两组函数掌握与了解的不同要求,在下一步的教学中注意区分就行了.

  教学中关于符号sinα、cosα、tanα的出场安排,教材首先对比值取名并给出英文记法,再研究它们与α的函数关系;另外可以先研究六个比值与α之间的函数关系,然后再对六个比值取名给出记法.后者更能突出函数内涵,揭示三角函数本质.本课例采用后者组织教学.

  三、教学过程分析(见穿插在教案中的设计意图).

    版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

    本文地址:https://www.gunzhua.com/fanwen/gongzuojihua/401915.html

相关内容

热门阅读
随机推荐